Parex Lanko 110 Skimcoat

Parex Group (ParexGroup)

Chemwatch: 81-5873
Version No: 3.1.1.1
Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Parex Lanko 110 Skimcoat</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses
Use according to manufacturer’s directions.
Cement based skim coat.

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Parex Group (ParexGroup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>67 Elizabeth Street Wetherill Park NSW 2164 Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 2 9616 3000</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 2 9725 5551</td>
</tr>
<tr>
<td>Website</td>
<td>www.davco.com.au</td>
</tr>
<tr>
<td>Email</td>
<td>marketing@davco.com.au</td>
</tr>
</tbody>
</table>

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	1800 039 008
Other emergency telephone	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

<table>
<thead>
<tr>
<th>CHEMWATCH HAZARD RATINGS</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Poisons Schedule
Not Applicable

Classification
Skin Corrosion/Initation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Germ cell mutagenicity Category 2, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3

Legend:

Label elements

Hazard pictogram(s)

SIGNAL WORD: DANGER

Hazard statement(s)

H315 Causes skin irritation.
H318 Causes serious eye damage.
H317 May cause an allergic skin reaction.
H341 Suspected of causing genetic defects.
H335 May cause respiratory irritation.
H412 Harmful to aquatic life with long lasting effects.

Supplementary statement(s)
Not Applicable

CLP classification (additional)
Not Applicable

Precautionary statement(s) Prevention
P201 Obtain special instructions before use.
P271 Use only outdoors or in a well-ventilated area.
P280 Wear protective gloves/protective clothing/eye protection/face protection.
P281 Use personal protective equipment as required.

Precautionary statement(s) Response
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P306a+P313 IF exposed or concerned: Get medical advice/attention.
P310 Immediately call a POISON CENTER or doctor/physician.
P362 Take off contaminated clothing and wash before reuse.

Precautionary statement(s) Storage
P405 Store locked up.
P403+P233 Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal
P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>471-34-1</td>
<td>50-90</td>
<td>calcium carbonate</td>
</tr>
<tr>
<td>65997-15-1</td>
<td>10-30</td>
<td>portland cement</td>
</tr>
<tr>
<td>Not Available</td>
<td>1-10</td>
<td>aluminate cement</td>
</tr>
<tr>
<td>7778-18-9</td>
<td>1-10</td>
<td>calcium sulfate</td>
</tr>
<tr>
<td></td>
<td>balance</td>
<td>Ingredients determined not to be hazardous</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Perform CPR if necessary.

Skin Contact
If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
- If fumes or combustion products are inhaled, remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve respirator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital or doctor, without delay.

Ingestion
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.
Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

For acute or short term repeated exposures to iron and its derivatives:

- Always treat symptoms rather than history.
- In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg.
- Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin.
- Hepatic damage may progress to failure with hyperprothrombinemia and hypoglycaemia. Hepatorenal syndrome may occur.
- Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension.
- Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater that 100 ug/dl indicate poisoning with levels, in excess of 350 ug/dl, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination.
- Activated charcoal does not effectively bind iron.
- Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea.
- Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antitoxine of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology]
- Manifestation of aluminium toxicity include hypercalcaemia, anemia, Vitamin D refractory osteodystrophy and a progressive encephalopathy (mixed dysarthria-apraxia of speech, asterisks, tremulousness, myoclonus, dementia, focal seizures). Bone pain, pathological fractures and proximal myopathy can occur.
- Symptoms usually develop insidiously over months to years (in chronic renal failure patients) unless dietary aluminium loads are excessive.
- Serum aluminium levels above 60 ug/ml indicate increased absorption. Potential toxicity occurs above 100 ug/ml and clinical symptoms are present when levels exceed 200 ug/ml.
- Deferoxamine has been used to treat dialysis encephalopathy and osteomalacia. CaNa2EDTA is less effective in chelating aluminum.

For acute or short-term repeated exposures to highly alkaline materials:

- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, tracheotomy may be necessary.
- Oxygen is given as indicated.
- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue. Alkalis continue to cause damage after exposure.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

- **Fire Incompatibility**: None known.

Advice for firefighters

Fire Fighting

- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.

Fire/Explosion Hazard

- Non combustible.
- Not considered a significant fire risk, however containers may burn.

Decomposition may produce toxic fumes of:

- sulfur oxides (SOx)
- silicon dioxide (SiO2)

When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles.

May emit poisonous fumes.

May emit corrosive fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

- **Minor Spills**: Remove all ignition sources.
Clean up all spills immediately.
Avoid contact with skin and eyes.
Control personal contact with the substance, by using protective equipment.

Major Spills
Moderate hazard.
- **CAUTION**: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.

Other information
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.

Conditions for safe storage, including any incompatibilities

Suitable container
- Check that containers are clearly labelled
- Packaging as recommended by manufacturer.
- Bags.

Storage incompatibility
- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid contact with copper, aluminium and their alloys.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>calcium carbonate</td>
<td>Calcium carbonate</td>
<td>10 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>portland cement</td>
<td>Portland cement</td>
<td>10 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>calcium sulfate</td>
<td>Calcium sulphate</td>
<td>10 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium carbonate</td>
<td>Limestone; (Calcium carbonate; Dolomite)</td>
<td>45 mg/m³</td>
<td>500 mg/m³</td>
<td>3,000 mg/m³</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>Carbonic acid, calcium salt</td>
<td>45 mg/m³</td>
<td>210 mg/m³</td>
<td>1,300 mg/m³</td>
</tr>
<tr>
<td>calcium sulfate</td>
<td>Calcium(II) sulfate dihydrate (1:1:2)</td>
<td>30 mg/m³</td>
<td>330 mg/m³</td>
<td>2,000 mg/m³</td>
</tr>
<tr>
<td>calcium sulfate</td>
<td>Calcium sulfate anhydrous; (Drierite; Gypsum; Plaster of Paris)</td>
<td>30 mg/m³</td>
<td>330 mg/m³</td>
<td>2,000 mg/m³</td>
</tr>
</tbody>
</table>

Original IDLH
- calcium carbonate: Not Available
- portland cement: N.E. mg/m³ / N.E. ppm
- aluminate cement: Not Available
- calcium sulfate: Not Available

Revised IDLH
- calcium carbonate: Not Available
- portland cement: 5,000 mg/m³
- aluminate cement: Not Available
- calcium sulfate: Not Available

Exposure controls

Appropriate engineering controls
Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment.

Personal protection
- Safety glasses with side shields.
- Chemical goggles.

Eye and face protection
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task.

Skin protection
See Hand protection below
Hands/feet protection

NOTE:
- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
- The exact breakthrough time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
- Personal hygiene is a key element of effective hand care.
- Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
 - polychloroprene.
 - nitrile rubber.
 - butyl rubber.

Body protection

See Other protection below

Other protection

- Overalls.
- P.V.C. apron.
- Barrier cream.

Thermal hazards

Not Available

Respiratory protection

Particulate (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent)

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>P1</td>
<td></td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>Air-line*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100+ x ES</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
</tbody>
</table>

* - Negative pressure demand; ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Grey powder; dispersible in water.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical state</td>
<td>Divided Solid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>EtAC = 1</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Partly miscible</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Partition coefficient n-octanol / water	Not Available
Auto-ignition temperature (°C)	Not Available
Decomposition temperature	Not Available
Viscosity (cSt)	Not Applicable
Molecular weight (g/mol)	Not Applicable
Taste	Not Available
Explosive properties	Not Available
Oxidising properties	Not Available
Surface Tension (dyn/cm or mN/m)	Not Applicable
Gas group	Not Available
pH as a solution (1%)	Not Available

| VOC g/L | 2 (SCAQMD Method 304-91) |

Continued...
SECTION 10 STABILITY AND REACTIVITY

<table>
<thead>
<tr>
<th>Reactivity</th>
<th>See section 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical stability</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Possibility of hazardous reactions</td>
<td>See section 7</td>
</tr>
<tr>
<td>Conditions to avoid</td>
<td>See section 7</td>
</tr>
<tr>
<td>Incompatible materials</td>
<td>See section 7</td>
</tr>
<tr>
<td>Hazardous decomposition products</td>
<td>See section 5</td>
</tr>
</tbody>
</table>

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

<table>
<thead>
<tr>
<th>Inhaled</th>
<th>The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Levels above 10 micrograms per cubic metre of suspended inorganic sulfates in the air may cause an excess risk of asthmatic attacks in susceptible people. Chronic exposure via the windpipe caused fibrosis in the alveoli and airways, with injuries of the lung cells. Some health effects associated with wood, cotton, flax, jute and hemp particles or fibres are not attributable to cellulose content but to other substances and/or impurities. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Effects on lungs are significantly enhanced in the presence of respirable particles.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestion</td>
<td>Accidental ingestion of the material may be damaging to the health of the individual. Compared with other metals, the calcium ion and most calcium compounds have low toxicity. Acute calcium poisoning is rare, and occurs only when calcium compounds are taken in high doses over a long period, or given through a vein. Excessive consumption of calcium carbonate antacids or pills over a period of weeks or months can cause milk-alkali syndrome, with high blood calcium and potentially fatal kidney failure. Excessive calcium supplementation can be detrimental to cardiovascular health, especially in men. Large doses of cellulose may be administered orally as non-nutritive bulk, with doses of up to 30 g/day tolerated as bulk laxative while extremely large oral doses may produce disturbances to the gut. Acute toxic responses to aluminium are confined to the more soluble forms.</td>
</tr>
<tr>
<td>Skin Contact</td>
<td>The material may cause moderate inflammation of the skin either following direct contact or after a delay of some time. Repeated exposure can cause contact dermatitis which is characterised by redness, swelling and blistering. Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Thus it may cause itching and skin reaction and inflammation. Skin contact may result in severe irritation particularly to broken skin. Ulceration known as “chrome ulcers” may develop. Chrome ulcers and skin cancer are significantly related. Open cuts, abraded or irritated skin should not be exposed to this material</td>
</tr>
<tr>
<td>Eye</td>
<td>If applied to the eyes, this material causes severe eye damage.</td>
</tr>
<tr>
<td>Chronic</td>
<td>Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Laboratory (in vitro) and animal studies show, exposure to the material may result in a possible risk of irreversible effects, with the possibility of producing mutation. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. Animal testing shows long term exposure to aluminium oxides may cause lung disease and cancer, depending on the size of the particle. The smaller the size, the greater the tendencies of causing harm. Exposure to large doses of aluminium has been connected with the degenerative brain disease Alzheimer's Disease. Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis. Pure calcium carbonate does not cause the disease pneumoconiosis probably due to its rapid elimination from the body. However, its unsterilised particulates can infect the lung and airway to cause inflammation. Chronic excessive intake of iron have been associated with damage to the liver and pancreas. People with a genetic disposition to poor control over iron are at an increased risk. Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parex Lanko 110 Skimcoat</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Calcium carbonate</td>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td></td>
<td>dermal (rat) LD50: >2000 mg/kg(^1)</td>
<td>Eye (rabbit): 0.75 mg/24h - SEVERE</td>
</tr>
<tr>
<td></td>
<td>Oral (rat) LD50: >2000 mg/kg(^1)</td>
<td>Skin (rabbit): 500 mg/24h-moderate</td>
</tr>
<tr>
<td>Portland cement</td>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Calcium sulfate</td>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td></td>
<td>Oral (rat) LD50: >1581 mg/kg(^1)</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
Calcium carbonate

No evidence of carcinogenic properties. No evidence of mutagenic or teratogenic effects.

Calcium sulfate

Gypsum (calcium sulphate dehydrate) irritates the skin, eye, mucous membranes, and airways. A series of studies involving Gypsum industry workers in Poland reported chronic, non-specific airways diseases. Repeat dose toxicity: Examination of workers at a gypsum manufacturing plant found restrictive defects on long function tests in those who were chronically exposed to gypsum dust. Synergistic/antagonistic effects: Gypsum appears to be protective on quartz toxicity in animal testing.

Parex Lanko 110 Skimcoat & Portland cement

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke’s oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions.

Parex Lanko 110 Skimcoat & Portland cement & Calcium Carbonate

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia.

Parex Lanko 110 Skimcoat & Portland cement & Calcium Carbonate

No significant acute toxicological data identified in literature search.

Parex Lanko 110 Skimcoat & Calcium Carbonate

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Parex Lanko 110 Skimcoat & Calcium Carbonate

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Acute Toxicity

Carcinogenicity

Skin Irritation/Corrosion

Carcinogenicity

Serious Eye Damage/Irritation

Reproductivity

Respiratory or Skin sensitisation

STOT - Single Exposure

Mutagenicity

STOT - Repeated Exposure

Legend:

- Data available but does not fill the criteria for classification
- Data available to make classification
- Data Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

Parex Lanko 110 Skimcoat

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Calcium carbonate

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>>56000mg/L</td>
<td>4</td>
</tr>
<tr>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>>14mg/L</td>
<td>2</td>
</tr>
<tr>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>14mg/L</td>
<td>2</td>
</tr>
</tbody>
</table>

Portland cement

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Calcium sulfate

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>>1970mg/L</td>
<td>4</td>
</tr>
<tr>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>10572278mg/L</td>
<td>3</td>
</tr>
<tr>
<td>EC0</td>
<td>96</td>
<td>Crustacea</td>
<td>>1255.000mg/L</td>
<td>1</td>
</tr>
<tr>
<td>NOEC</td>
<td>504</td>
<td>Crustacea</td>
<td>360mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend:

- Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For calcium chloride:

Environmental fate:

Calcium chlorides vapour pressure is negligible and its water solubility is 745 g/L at 20 deg C. Calcium chloride is readily dissociated into calcium and chloride ions in water. These physico-chemical properties indicate that calcium chloride released into the environment is distributed into the water compartment in the form of calcium and chloride ions.

Ecotoxicity:

Fish LC50 (96 h): Pimephales promelas 4630 mg/L

Continued...
Algae EC50 (72 h): Selenastrum capricornutum 2900 mg/l
Daphnia magna EC50 (48 h): 1062 mg/l
The chronic toxicity study with Daphnia magna shows that a 16% impairment of reproduction (EC16) is caused at the concentration of 320 mg/L. The 72-hour EC20 for Selenastrum capricornutum determined by the OECD TG 201 study is 1000 mg/L.

For Inorganic Sulfate:
Environmental Fate: Sulfates can produce a laxative effect at concentrations of 1000 - 1200 mg/liter, but no increase in diarrhea, dehydration or weight loss. The presence of sulfate in drinking-water can also result in a noticeable taste. Sulfate may also contribute to the corrosion of distribution systems. No health-based guideline value for sulfate in drinking-water is proposed. For Metal:
Atmospheric Fate: Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air.
Environmental Fate: Environmental processes, such as oxidation, the presence of acids or bases and microbiological processes, may transform insoluble metals to more soluble ionic forms. Environmental processes may enhance bioavailability and may also be important in changing solubilities. Aquatic/Terrestrial Fate: When released to dry soil, most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/or surface water ecosystems when soaked by rain or melt ice. A metal ion is considered infinitely persistent because it cannot degrade further.
For Chromium: Chromium is poorly absorbed by cells found in microorganisms, plants and animals. Hexavalent chrome anions are readily transported into cells and toxicity is closely linked to the higher oxidation state.
Ecotoxicity: Toxicity in Aquatic Organisms: Chromium is harmful to aquatic organisms in very low concentrations. Organisms consumed by fish species are very sensitive to low levels of chromium.

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.
- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.
- Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.
- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZCHEM</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

<table>
<thead>
<tr>
<th>Calcium Carbonate (471-34-1) is found on the following regulatory lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Portland Cement (65997-15-1) is found on the following regulatory lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calcium Sulfate (7778-18-9) is found on the following regulatory lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSSL</td>
<td>N (Portland cement; Calcium Sulfate)</td>
</tr>
<tr>
<td>China - IEGSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (Portland cement)</td>
</tr>
<tr>
<td>Korea - KECl</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>N (Portland cement)</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:

Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other Information

Ingredients with multiple CAS numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium Carbonate</td>
<td>471-34-1, 13397-26-7, 15634-14-7, 1317-65-3, 72808-12-9, 878759-26-3, 63660-97-9, 459411-10-0, 198352-33-9, 146358-95-4</td>
</tr>
<tr>
<td>Calcium Sulfate</td>
<td>7778-18-9, 10101-41-4, 14796-04-0</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- PC – TWA: Permissible Concentration-Time Weighted Average
- PC – STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- TLV: Threshold Limit Value
- TLV: TLV: Threshold Limit Value
- IDLH: Immediately Dangerous to Life or Health Concentrations
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- LOD: Limit Of Detection
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- BCF: BioConcentration Factors
- BEI: Biological Exposure Index

This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.