Lanko 134 Pro Level Express

Parex Group (ParexGroup)

Chemwatch: 4746-11
Version No: 4.1.1.1
Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Lanko 134 Pro Level Express</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Use according to manufacturer's directions.
Cement based product for levelling floors.

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Parex Group (ParexGroup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>67 Elizabeth Street Wetherill Park NSW 2164 Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 2 9616 3000</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 2 9725 5551</td>
</tr>
<tr>
<td>Website</td>
<td>www.davco.com.au</td>
</tr>
<tr>
<td>Email</td>
<td>marketing@davco.com.au</td>
</tr>
</tbody>
</table>

Emergency telephone number

Association / Organisation	Not Available
Emergency telephone numbers	1800 039 008
Other emergency telephone numbers	Not Available

CHEMWATCH EMERGENCY RESPONSE

Primary Number	Alternative Number 1	Alternative Number 2
1800 039 008 | 1800 039 008 | +612 9186 1132 |

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

<table>
<thead>
<tr>
<th>CHEMWATCH HAZARD RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
</tr>
<tr>
<td>Toxicity</td>
</tr>
<tr>
<td>Body Contact</td>
</tr>
<tr>
<td>Reactivity</td>
</tr>
<tr>
<td>Chronic</td>
</tr>
<tr>
<td>Poisons Schedule</td>
</tr>
<tr>
<td>Classification [1]</td>
</tr>
</tbody>
</table>

Label elements
GHS label elements

SIGNAL WORD DANGER

Hazard statement(s)
- **H315** Causes skin irritation.
- **H318** Causes serious eye damage.
- **H317** May cause an allergic skin reaction.
- **H335** May cause respiratory irritation.
- **H373** May cause damage to organs.
- **H412** Harmful to aquatic life with long lasting effects.

Precautionary statement(s) Prevention
- **P260** Do not breathe dust/fume/gas/mist/vapours/spray.
- **P271** Use only outdoors or in a well-ventilated area.
- **P280** Wear protective gloves/protective clothing/eye protection/face protection.
- **P273** Avoid release to the environment.
- **P272** Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response
- **P305+P351+P338** IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
- **P310** Immediately call a POISON CENTER or doctor/physician.
- **P362** Take off contaminated clothing and wash before reuse.
- **P363** Wash contaminated clothing before reuse.
- **P302+P352** IF ON SKIN: Wash with plenty of soap and water.
- **P333+P313** If skin irritation or rash occurs: Get medical advice/attention.

Precautionary statement(s) Storage
- **P405** Store locked up.
- **P403+P233** Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal
- **P501** Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>14808-60-7.</td>
<td>30-60</td>
<td>graded sand</td>
</tr>
<tr>
<td>471-34-1</td>
<td>10-30</td>
<td>calcium carbonate</td>
</tr>
<tr>
<td>Not Available</td>
<td>10-30</td>
<td>cement</td>
</tr>
<tr>
<td>65997-16-2</td>
<td>1-10</td>
<td>calcium aluminate cement</td>
</tr>
<tr>
<td></td>
<td>balance</td>
<td>Ingredients determined not to be hazardous</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
- If this product comes in contact with the eyes:
 - Immediately hold eyelids apart and flush the eye continuously with running water.
 - Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
 - Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
 - Transport to hospital or doctor without delay.
 - Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
- If skin or hair contact occurs:
 - Immediately flush body and clothes with large amounts of water, using safety shower if available.
 - Quickly remove all contaminated clothing, including footwear.
 - Wash skin and hair with running water. Continue flushing with water until advised to stop by the Poisons Information Centre.
 - Transport to hospital or doctor.
Inhalation

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion

- For advice, contact a Poisons Information Centre or a doctor at once.
- Urgent hospital treatment is likely to be needed.
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed
Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture
- Fire Incompatibility
 - Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

Advice for firefighters
- Fire Fighting
 - Alert Fire Brigade and tell them location and nature of hazard.
 - Wear breathing apparatus plus protective gloves in the event of a fire.
 - Prevent, by any means available, spillage from entering drains or water courses.
 - Use fire fighting procedures suitable for surrounding area.
 - DO NOT approach containers suspected to be hot.
 - Cool fire exposed containers with water spray from a protected location.
- Fire/Explosion Hazard
 - Non combustible.
 - Not considered a significant fire risk, however containers may burn.
 - Silicon dioxide (SiO2)When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles. May emit poisonous fumes. May emit corrosive fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

Major Spills
- Moderate hazard.
 - CAUTION: Advise personnel in area.
 - Alert Emergency Services and tell them location and nature of hazard.
 - Control personal contact by wearing protective clothing.
 - Prevent, by any means available, spillage from entering drains or water courses.
 - Recover product wherever possible.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.

Other information
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer’s storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container
- Polyethylene or polypropylene container.
- Check all containers are clearly labelled and free from leaks.
SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

<p>| OCCUPATIONAL EXPOSURE LIMITS (OEL) |</p>
<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>graded sand</td>
<td>Silica - Crystalline: Quartz (respirable dust) / Quartz (respirable dust)</td>
<td>0.1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>calcium carbonate</td>
<td>Calcium carbonate</td>
<td>10 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<p>| EMERGENCY LIMITS |</p>
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>graded sand</td>
<td>Silica, crystalline-quartz; (Silicon dioxide)</td>
<td>0.025 mg/m³</td>
<td>0.025 mg/m³</td>
<td>0.025 mg/m³</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>Limestone; (Calcium carbonate; Dolomite)</td>
<td>27 mg/m³</td>
<td>27 mg/m³</td>
<td>1300 mg/m³</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>Carbonic acid, calcium salt</td>
<td>45 mg/m³</td>
<td>210 mg/m³</td>
<td>1300 mg/m³</td>
</tr>
</tbody>
</table>

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:
- **Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment.**
- **Process controls which involve changing the way a job activity or process is done to reduce the risk.**
- **Ventilation** can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Personal protection

- Chemical goggles.
- Full face shield may be required for supplementary but never for primary protection of eyes.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available.

Eye and face protection

- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available.

Skin protection

See Hand protection below

Hands/feet protection

- **NOTE:**
 - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
 - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
 - The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
 - The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
 - Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and
 - dexterity
 - Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
 - When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
 - Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
 - polychloroprene.
 - nitrile rubber.
 - butyl rubber.
 - fluorosilicofluorocarbon.
 - polyvinyl chloride.

Body protection

See Other protection below

Other protection

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
Eye wash unit. Thermal hazards Not Available

Respiratory protection
Particulate. (AS/NZS 1716 & 1715, EN 143:000 & 149:001, ANSI Z88 or national equivalent)

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>P1</td>
<td></td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>Air-line*</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td></td>
<td>P3</td>
<td></td>
</tr>
<tr>
<td>100+ x ES</td>
<td></td>
<td>Air-line*</td>
<td></td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow
A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

If inhalation risk above the TLV exists, wear approved dust respirator.
Use respirators with protection factors appropriate for the exposure level.
- Up to 5 X TLV, use valveless mask type; use 1/2 mask dust respirator
- Up to 50 X TLV, use full face dust respirator or demand type C air supplied respirator
- Up to 500 X TLV, use powered air-purifying dust respirator or a Type C pressure demand supplied-air respirator
- Over 500 X TLV, use a Type C positive pressure supplied-air full-face respirator
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Grey powder with a characteristic odour; dispersible in water.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical state</td>
<td>Divided Solid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity | See section 7

Chemical stability
- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions | See section 7

Conditions to avoid | See section 7

Incompatible materials | See section 7
SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

<table>
<thead>
<tr>
<th>Hazardous decomposition products</th>
<th>See section 5</th>
</tr>
</thead>
</table>

Inhaled

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled. If prior damage to the cardiovascular or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures. Effects on lungs are significantly enhanced in the presence of respirable particles.

Ingestion

The material can produce chemical burns within the oral cavity and gastrointestinal tract following ingestion.

Skin Contact

The material can produce chemical burns following direct contact with the skin. Open cuts, abraded or irritated skin should not be exposed to this material. Products when wet may be quite alkaline and this alkali action on the skin may contribute to cement contact dermatitis by causing drying and de-fatting of the skin which may be followed by hardening, cracking, development of lesions, possible infections of lesions and penetration by soluble salts.

Eye

The material can produce chemical burns to the eye following direct contact. Vapours or mists may be extremely irritating. If applied to the eyes, this material causes severe eye damage.

Chronic

Repeated or prolonged exposure to corrosives may result in the erosion of teeth, inflammatory and ulcerative changes in the mouth and necrosis (rarely) of the jaw. Bronchial irritation, with cough, and frequent attacks of bronchial pneumonia may ensue. Harmful: danger of serious damage to health by prolonged exposure through inhalation. There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence that inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population. There is limited evidence that, skin contact with this product is more likely to cause a sensitisation reaction in some persons compared to the general population. Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than asbestos. In a small cohort mortality study of workers in a wollastonite quarry, the observed number of deaths from all cancers combined and lung cancer were lower than expected. wollastonite is a calcium inosilicate mineral (CaSiO3). In some cases, small amounts of iron (Fe), and manganese (Mn), and lesser amounts of magnesium (Mg) substitute for calcium (Ca) in the mineral formule (e.g., rhodonte). In an inhalation study in rats no increase in tumour incidence was observed but the number of fibres with lengths exceeding 5 μm and a diameter of less than 3 μm was relatively low. Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis may be characterised by fissures, excruciating rash, dysstrophic nails, and dry skin, acute contact with highly alkaline mixtures may cause localised necrosis. Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO]. Overexposure to respirable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity, chest infections. Repeated exposures, in an occupational setting, to high levels of fine-divided dusts may produce a condition known as pneumoconiosis which is the lodgement of any inhaled dusts in the lung irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1,500,000 inch), are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion (exertional dyspnea), increased chest expansion, weakness and weight loss. As the disease progresses the cough produces a stringy mucous, vital capacity decreases further and shortness of breath becomes more severe.

<table>
<thead>
<tr>
<th>Lanko 134 Pro Level Express</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>graded sand</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>calcium carbonate</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>dermal (rat) LD50: >2000 mg/kg[1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: >2000 mg/kg[1]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eye (rabbit): 0.75 mg/24h - SEVERE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skin (rabbit): 500 mg/24h-moderate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>calcium aluminat cement</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

Lanko 134 Pro Level Express

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases.

GRADED SAND

No significant acute toxicological data identified in literature search.
CALCIUM CARBONATE

Asthma-like symptoms may continue for months or years after exposure to the material. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

No evidence of carcinogenic properties. No evidence of mutagenic or teratogenic effects.

CALCIUM ALUMINATE CEMENT

Asthma-like symptoms may continue for months or years after exposure to the material. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases.

No data of toxicological significance identified in literature search.

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium carbonate</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>>56000mg/L</td>
<td>4</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>>14mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>14mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium aluminate cement</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>>100mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium aluminate cement</td>
<td>EC50</td>
<td>24</td>
<td>Crustacea</td>
<td>6.4mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium aluminate cement</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>5.4mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium aluminate cement</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>3.6mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium aluminate cement</td>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>2.6mg/L</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend:

- Data available but does not fill the criteria for classification
- Data required to make classification available
- Data Not Available to make classification

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPWINSuite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Biocencentration Data 7. METI (Japan) - Biocencentration Data 8. Vendor Data

For Silicas:

Environmental Fate: Most documentation on the fate of silica in the environment concerns dissolved silica, in the aquatic environment, regardless of origin, (man-made or natural), or structure, (crystalline or amorphous).

Terrestrial Fate: Silicon makes up 25.7% of the Earth's crust, by weight, and is the second most abundant element, being exceeded only by oxygen. Silicon is not found free in nature, but occurs chiefly as the oxide and as silicates. Once released into the environment, no distinct can be made between the initial forms of silica.

Aqueous Fate: At normal environmental pH, dissolved silica exists exclusively as monosilicic acid. At pH 9.4, amorphous silica is highly soluble in water.

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data available for all ingredients</td>
<td>No Data available for all ingredients</td>
<td></td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data available for all ingredients</td>
<td></td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data available for all ingredients</td>
<td></td>
</tr>
</tbody>
</table>
SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

<table>
<thead>
<tr>
<th>Product / Packaging disposal</th>
<th>Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Reduction</td>
</tr>
<tr>
<td></td>
<td>- Reuse</td>
</tr>
<tr>
<td></td>
<td>- Recycling</td>
</tr>
<tr>
<td></td>
<td>- Disposal (if all else fails)</td>
</tr>
<tr>
<td></td>
<td>This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.</td>
</tr>
<tr>
<td></td>
<td>- DO NOT allow wash water from cleaning or process equipment to enter drains.</td>
</tr>
<tr>
<td></td>
<td>- It may be necessary to collect all wash water for treatment before disposal.</td>
</tr>
<tr>
<td></td>
<td>- In all cases disposal may be subject to local laws and regulations and these should be considered first.</td>
</tr>
<tr>
<td></td>
<td>- Where in doubt contact the responsible authority</td>
</tr>
<tr>
<td></td>
<td>- Recycle wherever possible or consult manufacturer for recycling options.</td>
</tr>
<tr>
<td></td>
<td>- Consult State Land Waste Management Authority for disposal.</td>
</tr>
<tr>
<td></td>
<td>- Bury residue in an authorised landfill.</td>
</tr>
<tr>
<td></td>
<td>- Recycle containers if possible, or dispose of in an authorised landfill.</td>
</tr>
</tbody>
</table>

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAZCHEM</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

GRADED SAND(14808-60-7.) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

Australia Hazardous Substances Information System - Consolidated Lists

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

CALCIUM CARBONATE(471-34-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Exposure Standards

Australia Inventory of Chemical Substances (AICS)

CALCIUM ALUMINATE CEMENT(65997-16-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>Y</td>
</tr>
<tr>
<td>China - IEOSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>Y</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>N (calcium aluminate cement)</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:

Y = All ingredients are on the inventory

N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
</table>

Continued...
Calcium carbonate 471-34-1, 13397-26-7, 15634-14-7, 1317-65-3, 72608-12-9, 878759-26-3, 63660-97-9, 45941 1-10-0, 198352-33-9, 146358-95-4
Calcium aluminate cement 65997-16-2, 12042-68-1

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.
A list of reference resources used to assist the committee may be found at: www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations
PC—TWA: Permissible Concentration-Time Weighted Average
PC—STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit,
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.

end of SDS