Davco Lanko 189 Bulk Fill Screed

Parex Group (ParexGroup)

Chemwatch: 8809-37
Version No: 7.1.1.1
Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Davco Lanko 189 Bulk Fill Screed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses: Rapid setting bulk filling compound.

Details of the supplier of the safety data sheet

Registered company name: Parex Group (ParexGroup)
Address: 67 Elizabeth Street Wetherill Park NSW 2164 Australia
Telephone: +61 2 9616 3000
Fax: +61 2 9725 5551
Website: www.davco.com.au
Email: marketing@davco.com.au

Emergency telephone number

Emergency / Organisation: Not Available
Emergency telephone numbers: 1800 039 008
Other emergency telephone numbers: Not Available

CHEMWATCH EMERGENCY RESPONSE

Primary Number	Alternative Number 1	Alternative Number 2
1800 039 008 | 1800 039 008 | +612 9186 1132 |

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

<table>
<thead>
<tr>
<th>CHEMWATCH HAZARD RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
</tr>
<tr>
<td>Toxicty</td>
</tr>
<tr>
<td>Body Contact</td>
</tr>
<tr>
<td>Reactivity</td>
</tr>
<tr>
<td>Chronic</td>
</tr>
</tbody>
</table>

Poisons Schedule: Not Applicable

Classification [1]

1. Skin Corrosion/Inflammation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3

Label elements

Continued...
GHS label elements

<table>
<thead>
<tr>
<th>SIGNAL WORD</th>
<th>DANGER</th>
</tr>
</thead>
</table>

Hazard statement(s)

- H315 Causes skin irritation.
- H318 Causes serious eye damage.
- H317 May cause an allergic skin reaction.
- H335 May cause respiratory irritation.
- H412 Harmful to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

- P271 Use only outdoors or in a well-ventilated area.
- P280 Wear protective gloves/protective clothing/eye protection/face protection.
- P261 Avoid breathing dust/fumes.
- P273 Avoid release to the environment.
- P272 Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

- P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
- P310 Immediately call a POISON CENTER or doctor/physician.
- P362 Take off contaminated clothing and wash before reuse.
- P363 Wash contaminated clothing before reuse.
- P333+P313 If skin irritation or rash occurs: Get medical advice/attention.

Precautionary statement(s) Storage

- P405 Store locked up.
- P403+P233 Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

- P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>14808-60-7.</td>
<td>30-60</td>
<td>graded sand</td>
</tr>
<tr>
<td>65997-15-1</td>
<td>10-30</td>
<td>portland cement</td>
</tr>
<tr>
<td>65997-16-2</td>
<td>1-10</td>
<td>calcium aluminate cement</td>
</tr>
<tr>
<td>471-34-1</td>
<td>1-10</td>
<td>calcium carbonate</td>
</tr>
<tr>
<td>balance</td>
<td></td>
<td>Ingredients determined not to be hazardous</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.
Precautions for safe handling

Safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.

Inhalation

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion

- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casually can comfortably drink.
- Seek medical advice.

Indication of any immediate medical attention and special treated needed

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Water spray or fog.
- Alcohol stable foam.
- Dry chemical powder.
- Carbon dioxide.

Special hazards arising from the substrate or mixture

- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result.

Advice for firefighters

Fire Fighting

- When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles.
- When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.

Fire/Explosion Hazard

- Combustible solid which burns but propagates flame with difficulty; it is estimated that most organic dusts are combustible (circa 70%) - according to the circumstances under which the combustion process occurs, such materials may cause fires and/or dust explosions.
- Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions).
- Avoid generating dust, particularly clouds of dust in a confined or unventilated space as dusts may form an explosive mixture with air, and any source of ignition, i.e. flame or spark, will cause fire or explosion. Dust clouds generated by the fine grinding of the solid are a particular hazard; accumulations of fine dust (420 micron or less) may burn rapidly and fiercely. If ignited - particles exceeding this limit will generally not form flammable dust clouds; once ignited, however, larger particles up to 1400 microns diameter will contribute to the propagation of an explosion.
- In the same way as gases and vapours, dusts in the form of a cloud are only ignitable over a range of concentrations; in principle, the concepts of lower explosive limit (LEL) and upper explosive limit (UEL) are applicable to dust clouds but only the LEL is of practical use; - this is because of the inherent difficulty of achieving homogeneous dust clouds at high temperatures (for dusts the LEL is often called the “Minimum Explosible Concentration”, MEC).
- When processed with flammable liquids/vapors/mists/ignitable (hybrid) mixtures may be formed with combustible dusts. Combustion products include: carbon monoxide (CO), carbon dioxide (CO2), silicon dioxide (SiO2) other pyrolysis products typical of burning organic material. When aluminium oxide dust is dispersed in air, firefighters should wear protection against inhalation of dust particles, which can also contain hazardous substances from the fire absorbed on the alumina particles. May emit poisonous fumes. May emit corrosive fumes.

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

Minor Spills

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Use dry clean-up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

Major Spills

Moderate hazard.

- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
DO NOT enter confined spaces until atmosphere has been checked.
DO NOT allow material to contact humans, exposed food or food utensils.
Organic powders when finely divided over a range of concentrations regardless of particulate size or shape and suspended in air or some other oxidizing medium may form explosive dust-air mixtures and result in a fire or dust explosion (including secondary explosions)
Minimise airborne dust and eliminate all ignition sources. Keep away from heat, hot surfaces, sparks, and flame.
Establish good housekeeping practices.
Remove dust accumulations on a regular basis by vacuuming or gentle sweeping to avoid creating dust clouds.
Use continuous suction at points of dust generation to capture and minimise the accumulation of dusts. Particular attention should be given to overhead and hidden horizontal surfaces to minimise the probability of a "secondary" explosion.

Other information
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer’s storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

- **Suitable container**
 - Polyethylene or polypropylene container.
 - Check all containers are clearly labelled and free from leaks.

- **Storage incompatibility**
 - Avoid reaction with oxidising agents
 - 44acid344cual

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>graded sand</td>
<td>Silica - Crystalline: Quartz (respirable dust) / Quartz (respirable dust)</td>
<td>0.1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>portland cement</td>
<td>Portland cement</td>
<td>10 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>calcium carbonate</td>
<td>Calcium carbonate</td>
<td>10 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1 mg/m³</th>
<th>TEEL-2 mg/m³</th>
<th>TEEL-3 mg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>graded sand</td>
<td>Silica, crystalline-quartz: (Silicon dioxide)</td>
<td>0.025</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>Limestone: (Calcium carbonate, Dolomite)</td>
<td>27</td>
<td>27</td>
<td>1300</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>Carbonic acid, calcium salt</td>
<td>45</td>
<td>210</td>
<td>1300</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>graded sand</td>
<td>N.E. mg/m³ / N.E. ppm</td>
<td>50 mg/m³</td>
</tr>
<tr>
<td>portland cement</td>
<td>N.E. mg/m³ / N.E. ppm</td>
<td>5,000 mg/m³</td>
</tr>
<tr>
<td>calcium aluminite cement</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Personal protection

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available.

Skin protection

See Hand protection below.

Hands/feet protection

NOTE:
- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior
to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.

- polychloroprene.
- nitrile rubber.
- butyl rubber.
- fluorocaoutchouc.
- polyvinyl chloride.

Body protection See Other protection below

Other protection

- Overalls.
- P.V.C. apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Thermal hazards Not Available

Respiratory protection

Particulate. (AS/NZS 1716 & 1715, EN 143:000 & 149:001, ANSI Z88 or national equivalent)

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>Air-line*</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>-</td>
<td>P3</td>
<td></td>
</tr>
<tr>
<td>100+ x ES</td>
<td>Air-line**</td>
<td>-</td>
<td>PAPR-P3</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

If inhalation risk above the TLV exists, wear approved dust respirator.

Use respirators with protection factors appropriate for the exposure level.

- Up to 5 X TLV, use valveless mask type; up to 10 X TLV, use 1/2 mask dust respirator.
- Up to 50 X TLV, use full face dust respirator or demand type C air supplied respirator.
- Over 500 X TLV use powered air-purifying dust respirator or a Type C pressure demand supplied-air respirator.

For occupational exposure limits refer to a government or vendor recommended site for specific substances.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Grey powder with a cement-like odour; insoluble in water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Divided Solid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Relative density (Water = 1)</td>
<td>1.6</td>
</tr>
<tr>
<td>Partition coefficient n-octanol / water</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>Auto-ignition temperature (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Viscosity (cSt)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Taste</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
SECTION 10 STABILITY AND REACTIVITY

Reactivity
See section 7

Chemical stability
Unstable in the presence of incompatible materials.
Product is considered stable.
Hazardous polymerisation will not occur.

Possibility of hazardous reactions
See section 7

Conditions to avoid
See section 7

Incompatible materials
See section 7

Hazardous decomposition products
See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled
The material can cause respiratory irritation in some persons. The body’s response to such irritation can cause further lung damage. Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.
If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material results in excessive exposures.
Effects on lungs are significantly enhanced in the presence of respirable particles.

Ingestion
Accidental ingestion of the material may be damaging to the health of the individual. Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastro-intestinal tract.

Skin Contact
This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition.
Handling wet cement can cause dermatitis. Cement when wet is quite alkaline and this alkali action on the skin contributes strongly to cement contact dermatitis since it may cause drying and defatting of the skin which is followed by hardening, cracking, lesions developing, possible infections of lesions and penetration by soluble salts.
Skin contact may result in severe irritation particularly to broken skin. Ulceration known as “chrome ulcers” may develop. Chrome ulcers and skin cancer are significantly related.
Open cuts, abraded or irritated skin should not be exposed to this material.

Eye
If applied to the eyes, this material causes severe eye damage.

Chronic
Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.
There is some evidence that inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population.
There is limited evidence that, skin contact with this product is more likely to cause a sensitisation reaction in some persons compared to the general population.
Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dysrhythmic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis.
Cement eczema may be due to chromium in feed stocks or contamination from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO].
Overexposure to respirable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity, chest infections.
Repeated exposures, in an occupational setting, to high levels of fine-divided dusts may produce a condition known as pneumoconiosis which is the lodgement of any inhaled dusts in the lung irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50,000 inch), are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough and sputum. As the disease progresses the cough produces a stringy mucous, vital capacity decreases further and shortness of breath becomes more severe.
There has been some concern that this material can cause cancer or mutations but there is not enough data to make an assessment.

<table>
<thead>
<tr>
<th>Davco Lanko 189 Bulk Fill Screed</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davco Lanko 189 Bulk Fill Screed</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>graded sand</td>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td>graded sand</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>portland cement</td>
<td>TOXICITY</td>
<td>IRRITATION</td>
</tr>
<tr>
<td>portland cement</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>
Data available but does not fill the criteria for classification

Eye (rabbit): 0.75 mg/24h - SEVERE

No significant acute toxicological data identified in literature search.

STOT - Repeated Exposure Not Available

IRRITATION

Skin (rabbit): 500 mg/24h - moderate

LEGEND:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of Chemical Substances

Davco Lanko 189 Bulk Fill Screed

No significant acute toxicological data identified in literature search.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases.

GRADED SAND

No significant acute toxicological data identified in literature search.

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential, the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact.

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases.

PORTLAND CEMENT

No significant acute toxicological data identified in literature search.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

No evidence of carcinogenic properties. No evidence of mutagenic or teratogenic effects.

CALCIUM ALUMINATE CEMENT

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases.

CALCIUM CARBONATE

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

No evidence of carcinogenic properties. No evidence of mutagenic or teratogenic effects.
<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium aluminate cement</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>>100mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium aluminate cement</td>
<td>EC50</td>
<td>24</td>
<td>Crustacea</td>
<td>6.4mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium aluminate cement</td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>5.4mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium aluminate cement</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>3.6mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium aluminate cement</td>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>2.6mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>>56000mg/L</td>
<td>4</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>EC50</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>>14mg/L</td>
<td>2</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>NOEC</td>
<td>72</td>
<td>Algae or other aquatic plants</td>
<td>14mg/L</td>
<td>2</td>
</tr>
</tbody>
</table>

Legend:
Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

For Silica:
Environmental Fate: Most documentation on the fate of silica in the environment concerns dissolved silica, in the aquatic environment, regardless of origin, (man-made or natural), or structure, (crystalline or amorphous).
Terrestrial Fate: Silicon makes up 25.7% of the Earth’s crust, by weight, and is the second most abundant element, being exceeded only by oxygen. Silicon is not found free in nature, but occurs chiefly as the oxide and as silicates. Once released into the environment, no distinction can be made between the initial forms of silica.
Aquatic Fate: At normal environmental pH, dissolved silica exists exclusively as monosilicic acid. At pH 9.4, amorphous silica is highly soluble in water.
DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Data available for all ingredients</td>
<td>No Data available for all ingredients</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Data available for all ingredients</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Data available for all ingredients</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate:
- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.
- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licenced to accept chemical and/or pharmaceutical wastes or Incineration in a licenced apparatus (after admixture with suitable combustible material)
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable
SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

GRADED SAND (14808-60-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Exposure Standards
- Australia Hazardous Substances Information System - Consolidated Lists
- International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

PORTLAND CEMENT (65997-15-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Exposure Standards
- Australia Inventory of Chemical Substances (AICS)

CALCIUM ALUMINATE CEMENT (65997-16-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Inventory of Chemical Substances (AICS)

CALCIUM CARBONATE (471-34-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Exposure Standards
- Australia Inventory of Chemical Substances (AICS)

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSC</td>
<td>N (Portland cement; calcium aluminate cement; graded sand)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - ENEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (Portland cement)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>N (Portland cement; calcium aluminate cement)</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium aluminate cement</td>
<td>65997-16-2, 12042-68-1</td>
</tr>
<tr>
<td>calcium carbonate</td>
<td>471-34-1, 13397-26-7, 15634-14-7, 1317-65-3, 7283812-9, 878759-26-3, 63660-97-9, 459411-10-0, 198352-33-9, 146358-95-4</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:
www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- PC – TWA: Permissible Concentration-Time Weighted Average
- PC – STEL: Permissible Concentration-Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- TEEL: Temporary Emergency Exposure Limit
- IDLH: Immediately Dangerous to Life or Health Concentrations
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- BCF: BioConcentration Factors
- BEI: Biological Exposure Index

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.