SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Davco Lanko 780</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses | Use according to manufacturer's directions.

Details of the supplier of the safety data sheet

Registered company name | Parex Group (ParexGroup) |
Address | 67 Elizabeth Street Wetherill Park NSW 2164 Australia |
Telephone | +61 2 9616 3000 |
Fax | +61 2 9725 5551 |
Website | www.davco.com.au |
Email | marketing@davco.com.au |

Emergency telephone number

Emergency telephone numbers | 1800 039 008 |
Other emergency telephone numbers | Not Available |

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

<table>
<thead>
<tr>
<th>CHEMWATCH HAZARD RATINGS</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Poisons Schedule | Not Applicable

Classification [1] | Acute Toxicity (Oral) Category 5, Acute Toxicity (Inhalation) Category 5, Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3

Label elements

Hazard pictogram(s) | ! | 🔥 |

SIGNAL WORD | DANGER |

Hazard statement(s)

H303 | May be harmful if swallowed.

H333 | May be harmful if inhaled.

H315 | Causes skin irritation.

H318 | Causes serious eye damage.
SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>65997-15-1</td>
<td>30-60</td>
<td>portland cement</td>
</tr>
<tr>
<td>14808-60-7</td>
<td>30-60</td>
<td>graded sand</td>
</tr>
<tr>
<td>37293-22-4</td>
<td>1-10</td>
<td>calcium aluminosulfate</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor.

Skin Contact
If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
Indication of any immediate medical attention and special treatment needed
Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

| Fire Incompatibility | None known |

Advice for firefighters
- When silica dust is dispersed in air, firefighters should wear inhalation protection as hazardous substances from the fire may be adsorbed on the silica particles.
- When heated to extreme temperatures, (>1700 deg.C) amorphous silica can fuse.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard
- Non combustible.
- Not considered a significant fire risk, however containers may burn.
- Decomposition may produce toxic fumes of:
 - Combustion products include:
 - silicon dioxide (SiO2)
 - metal oxides
 - May emit poisonous fumes.
 - May emit corrosive fumes.

HAZCHEM
- Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions
See section 12

Methods and material for containment and cleaning up

<table>
<thead>
<tr>
<th>Minor Spills</th>
<th>Moderate hazard.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Remove all ignition sources.</td>
<td></td>
</tr>
<tr>
<td>- Clean up all spills immediately.</td>
<td></td>
</tr>
<tr>
<td>- Avoid contact with skin and eyes.</td>
<td></td>
</tr>
<tr>
<td>- Control personal contact with the substance, by using protective equipment.</td>
<td></td>
</tr>
<tr>
<td>- Use dry clean up procedures and avoid generating dust.</td>
<td></td>
</tr>
<tr>
<td>- Place in a suitable, labelled container for waste disposal.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Major Spills</th>
<th>CAUTION: Advise personnel in area.</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Alert Emergency Services and tell them location and nature of hazard.</td>
<td></td>
</tr>
<tr>
<td>- Control personal contact by wearing protective clothing.</td>
<td></td>
</tr>
<tr>
<td>- Prevent, by any means available, spillage from entering drains or water courses.</td>
<td></td>
</tr>
<tr>
<td>- Recover product wherever possible.</td>
<td></td>
</tr>
<tr>
<td>- IF DRY: Use dry clean up procedures and avoid generating dust. Collect residues and place in sealed plastic bags or other containers for disposal. IF WET: Vacuum/shovel up and place in labelled containers for disposal.</td>
<td></td>
</tr>
<tr>
<td>- ALWAYS: Wash area down with large amounts of water and prevent runoff into drains.</td>
<td></td>
</tr>
<tr>
<td>- If contamination of drains or waterways occurs, advise Emergency Services.</td>
<td></td>
</tr>
</tbody>
</table>

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

<table>
<thead>
<tr>
<th>Safe handling</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Avoid all personal contact, including inhalation.</td>
</tr>
<tr>
<td>- Wear protective clothing when risk of exposure occurs.</td>
</tr>
<tr>
<td>- Use in a well-ventilated area.</td>
</tr>
<tr>
<td>- Prevent concentration in hollows and sumps.</td>
</tr>
<tr>
<td>- DO NOT enter confined spaces until atmosphere has been checked.</td>
</tr>
<tr>
<td>- DO NOT allow material to contact humans, exposed food or food utensils.</td>
</tr>
<tr>
<td>- Avoid contact with incompatible materials.</td>
</tr>
<tr>
<td>- When handling, DO NOT eat, drink or smoke.</td>
</tr>
<tr>
<td>- Keep containers securely sealed when not in use.</td>
</tr>
</tbody>
</table>
Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.

Conditions for safe storage, including any incompatibilities

Suitable container
- Check that containers are clearly labelled
- Packaging as recommended by manufacturer.

Storage incompatibility
- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid contact with copper, aluminium and their alloys.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>portland cement</td>
<td>Portland cement</td>
<td>10 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>graded sand</td>
<td>Quartz (respirable dust)</td>
<td>0.1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>graded sand</td>
<td>Quartz (respirable dust)</td>
<td>0.1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>graded sand</td>
<td>Silica - Crystalline</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>graded sand</td>
<td>Silica, crystalline-quartz; (Silicon dioxide)</td>
<td>0.075 mg/m³</td>
<td>30 mg/m³</td>
<td>200 mg/m³</td>
</tr>
<tr>
<td>portland cement</td>
<td>Original IDLH</td>
<td>Revised IDLH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>graded sand</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
<tr>
<td>calcium aluminosulfate</td>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DATA

For calcium silicate:
- containing no asbestos and <1% crystalline silica
- ES TWA: 10 mg/m³ inspirable dust
- TLV-TWA: 10 mg/m³ total dust (synthetic nonfibrous)

Although in vitro studies indicate that calcium silicate is more toxic than substances described as "nuisance dusts" is thought that adverse health effects which might occur following exposure to 10-20 mg/m³ are likely to be minimal. The TLV-TWA is thought to be protective against the physical risk of eye and upper respiratory tract irritation in workers and to prevent interference with vision and deposition of particulate in the eyes, ears, nose and mouth.

NOTE: This substance has been classified by the ACGIH as A4 NOT classifiable as causing Cancer in humans

The concentration of dust, for application of respirable dust limits, is to be determined from the fraction that penetrates a separator whose size collection efficiency is described by a cumulative log-normal function with a median aerodynamic diameter of 4.0 um (+-) 0.3 um and with a geometric standard deviation of 1.5 um (+-) 0.1 um, i.e.. generally less than 5 um.

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Exposure controls

1. Local exhaust ventilation is required where solids are handled as powders or crystals; even when particulates are relatively large, a certain proportion will be powdered by mutual friction.
2. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.
Type of Contaminant:
- direct spray, spray painting in shallow booths, drum filling, conveyor loading, cruiser dusts, gas discharge (active generation into zone of rapid air motion)
- grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).

<table>
<thead>
<tr>
<th>Air Speed:</th>
<th>1-2.5 m/s (200-500 f/min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5-10 m/s (500-2000 f/min.)</td>
</tr>
</tbody>
</table>

Within each range the appropriate value depends on:

- Lower end of the range
- Upper end of the range

1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 4-10 m/s (800-2000 f/min) for extraction of crusher dusts generated 2 metres distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Chemical goggles.
- Full face shield may be required for supplementary but never for primary protection of eyes.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lenses should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection

- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
- The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced.
- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- Gloves should be examined for wear and/or degradation constantly. Gloves should be examined for wear and/or degradation constantly. Gloves should be examined for wear and/or degradation constantly. Gloves should be examined for wear and/or degradation constantly.
- Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:
 - Glove thickness and abrasion or puncture potential.

Hands/feet protection

- Suitable material may include:
 - polyvinyl chloride.
 - nitrile rubber.
 - butyl rubber.
 - fenacrylate.
 - polyvinyl chloride.

Gloves should be examined for wear and/or degradation constantly.

Skin protection

- See Hand protection below

Body protection

- See Other protection below

NOTE:
- The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
- Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
- The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
- Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.
- Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
 - frequency and duration of contact,
 - chemical resistance of glove material,
 - glove thickness and dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use. Contaminated gloves should be replaced.
- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.
Other protection

- Overalls.
- PVC apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Thermal hazards

Not Available

Respiratory protection

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>P1, Air-line*</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>P3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>100+ x ES</td>
<td>-</td>
<td>Air-line*</td>
<td>-</td>
</tr>
<tr>
<td>100+ x ES</td>
<td>-</td>
<td>Air-line**</td>
<td>PAPR-P3</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

If inhalation risk above the TLV exists, wear approved dust respirator.

- Use respirators with protection factors appropriate for the exposure level.
- Up to 5 X TLV use valveless mask type; up to 10 X TLV use 1/2 mask dust respirator
- Up to 50 X TLV use full face dust respirator or demand type C air supplied respirator
- Over 500 X TLV wear full-face self-contained breathing apparatus with positive pressure mode or a combination respirator with a Type C positive pressure supplied-air full-face respirator and an auxiliary self-contained breathing apparatus operated in pressure demand or other positive pressure mode
- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Off-white greyish powder with a cement-like odour; does not mix with water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Divided Solid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Partition coefficient n-octanol / water</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>Auto-ignition temperature (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Viscosity (cSt)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Taste</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Available</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>VOC = 5 g/L (SCAQMD Method 304-91)</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Immiscible</td>
</tr>
<tr>
<td>pH as a solution (1%)</td>
<td>>7 (slurry)</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity

- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Chemical stability

See section 7

Possibility of hazardous reactions

See section 7
SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Effects on lungs are significantly enhanced in the presence of respirable particles. Overexposure to respirable dust may produce wheezing, coughing and breathing difficulties leading to or symptomatic of impaired respiratory function.

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

Incompatible materials

See section 7

Hazardous decomposition products

See section 5

Conditions to avoid

See section 7

Davco Lanko 780

TOXICITY

<table>
<thead>
<tr>
<th>Davco Lanko 780</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICITY</td>
</tr>
<tr>
<td>Not Available</td>
</tr>
</tbody>
</table>

Continued...
PORTLAND CEMENT

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

PORTLAND CEMENT & GRADED SAND & CALCIUM ALUMINOSULFATE

No significant acute toxicological data identified in literature search.

Toxicity

<table>
<thead>
<tr>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Davco Lanko 780</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>portland cement</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>graded sand</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>calcium aluminosulfate</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Legend:

- **-** Data available but does not fill the criteria for classification
- **✓** Data available to make classification
- **✗** Data Not Available to make classification

ECOLOGICAL INFORMATION

Toxicity

Metal-containing inorganic substances generally have negligible vapour pressure and are not expected to partition to air. Once released to surface waters and moist soils their fate depends on solubility and dissociation in water. Environmental processes (such as oxidation and the presence of acids or bases) may transform insoluble metals to more soluble ionic forms. Microbiological processes may also transform insoluble metals to more soluble forms. Such ionic species may bind to dissolved ligands or sorb to solid particles in aquatic or aqueous media. A significant proportion of dissolved/sorbed metals will end up in sediments through the settling of suspended particles. The remaining metal ions can then be taken up by aquatic organisms.

When released to dry soil most metals will exhibit limited mobility and remain in the upper layer; some will leach locally into ground water and/or surface water ecosystems when soaked by rain or melt ice. Environmental processes may also be important in changing solubilities.

Even though many metals show few toxic effects at physiological pHs, transformation may introduce new or magnified effects.
A metal ion is considered infinitely persistent because it cannot degrade further.

The current state of science does not allow for an unambiguous interpretation of various measures of bioaccumulation.

The counter-ion may also create health and environmental concerns once isolated from the metal. Under normal physiological conditions the counter-ion may be essentially insoluble and may not be bioavailable.

Environmental processes may enhance bioavailability.

For silica:

The literature on the fate of silica in the environment concerns dissolved silica in the aquatic environment, irrespective of its origin (man-made or natural), or structure (crystalline or amorphous). Indeed, once released and dissolved into the environment no distinction can be made between the initial forms of silica. At normal environmental pH, dissolved silica exists exclusively as monosilicic acid [Si(OH)4]. At pH 9.4 the solubility of amorphous silica is about 120 mg SiO2/l. Quartz has a solubility of only 6 mg/l, but its rate of dissolution is so slow at ordinary temperature and pressure that the solubility of important amount silica represents the upper limit of dissolved silica concentration in natural waters. Moreover, silicic acid is the bioavailable form for aquatic organisms and it plays an important role in the biogeochemical cycle of Si, particularly in the oceans.

In the oceans, the transfer of dissolved silica from the marine hydrosphere to the biosphere initiates the global biological silicon cycle. Marine organisms such as diatoms, silicoflagellates and radiolarians build up their skeletons by taking up silicic acid from seawater. After these organisms die, the biogenic silica accumulated in them partly dissolves. The portion of the biogenic silica that does not dissolve settles and ultimately reaches the sediment. The transformation of opal (amorphous biogenic silica) deposits in sediments through diagenetic processes allows silica to re-enter the geological cycle. Silica is labile between the water and sediment interface.

Ecotoxicity:

Fish LC50 (96 h): Brachydanio rerio >10000 mg/l; zebra fish >10000 mg/l
Daphnia magna EC50 (24 h): >1000 mg/l; LC50 (96 h): >10000 mg/l
DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data available for all ingredients</td>
<td>No Data available for all ingredients</td>
<td></td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data available for all ingredients</td>
<td></td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data available for all ingredients</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. In many instances the supplier of the material should be consulted.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Management Authority for disposal.
- Bury residue in an authorised landfill.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

PORTLAND CEMENT(65997-15-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Continued...
GRADED SAND(14808-60-7.) IS FOUND ON THE FOLLOWING REGULATORY LISTS

GRADED SAND IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

CALCIUM ALUMINOSULFATE(37293-22-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS

CALCIUM ALUMINOSULFATE IS FOUND ON THE FOLLOWING REGULATORY LISTS

National Inventory Status
Africa - AICS Y
North America - HALIS Y
Brazil - ANP N (calcium aluminosulfate; portland cement)
Canada - DSL N (calcium aluminosulfate; graded sand)
Canada - NDSSL N (calcium aluminosulfate; portland cement)
China - IECSC N (calcium aluminosulfate)
Europe - EINEC / ELINCS / NLP N (calcium aluminosulfate; portland cement)
Japan - ENCS N (calcium aluminosulfate)
Korea - KEIC Y
New Zealand - NZIoC N (calcium aluminosulfate)
Philippines - PICCS N (calcium aluminosulfate; portland cement)
USA - TSCA N (calcium aluminosulfate)

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information
Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations
PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LCL: Limit Of Detection
OTV: Odour Threshold Value
BGF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.