Lanko 302 Cement Accelerator

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Lanko 302 Cement Accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

| Relevant identified uses | Use according to manufacturer's directions. Cement additive |

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Parex Group (ParexGroup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>67 Elizabeth Street Wetherill Park NSW 2164 Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 2 9616 3000</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 2 9725 5551</td>
</tr>
<tr>
<td>Website</td>
<td>www.davco.com.au</td>
</tr>
<tr>
<td>Email</td>
<td>marketing@davco.com.au</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>1800 039 008</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

CHEMWATCH EMERGENCY RESPONSE

<table>
<thead>
<tr>
<th>Primary Number</th>
<th>Alternative Number 1</th>
<th>Alternative Number 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1800 039 008</td>
<td>+61 2 9186 1132</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

<table>
<thead>
<tr>
<th>CHEMWATCH HAZARD RATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Legend:
SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>10043-52-4</td>
<td>30-60</td>
<td>calcium chloride</td>
</tr>
<tr>
<td>7732-18-5</td>
<td>30-60</td>
<td>water</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin or hair contact occurs:
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.
- Other measures are usually unnecessary.

Inhalation

- **IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.**
- For advice, contact a Poisons Information Centre or a doctor.
- Urgent hospital treatment is likely to be needed.
- In the mean time, qualified first aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient’s condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings, send the patient to a hospital together with a copy of the SDS.
- **NOTE**: Wear a protective glove when inducing vomiting by mechanical means.

Indication of any immediate medical attention and special treatment needed

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
Monitor and treat, where necessary, for shock.
Anticipate seizures.
DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
Positive-pressure ventilation using a bag-valve mask might be of use.
Monitor and treat, where necessary, for arrhythmias.
Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
Drug therapy should be considered for pulmonary oedema.
Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
Treat seizures with diazepam.
Proparacaine hydrochloride should be used to assist eye irrigation.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

There is no restriction on the type of extinguisher which may be used.
Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

| Fire Incompatibility | None known |

Advice for firefighters

Fire Fighting
Alert Fire Brigade and tell them location and nature of hazard.
Wear breathing apparatus plus protective gloves in the event of a fire.
Prevent, by any means available, spillage from entering drains or water courses.
Use fire fighting procedures suitable for surrounding area.
DO NOT approach containers suspected to be hot.
Cool fire exposed containers with water spray from a protected location.

Fire/Explosion Hazard
Non combustible.
Not considered a significant fire risk, however containers may burn.
Decomposition may produce toxic fumes of:
hydrogen chloride
metal oxides
May emit poisonous fumes.
May emit corrosive fumes.

HAZCHEM
Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions
See section 12

Methods and material for containment and cleaning up

Minor Spills
Clean up all spills immediately.
Avoid breathing vapours and contact with skin and eyes.
Control personal contact with the substance, by using protective equipment.
Contain and absorb spill with sand, earth, inert material or vermiculite.
Wipe up.
Place in a suitable, labelled container for waste disposal.

Major Spills
Moderate hazard.
Clear area of personnel and move upwind.
Alert Fire Brigade and tell them location and nature of hazard.
Wear breathing apparatus plus protective gloves.
Prevent, by any means available, spillage from entering drains or water course.
Stop leak if safe to do so.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling
Avoid all personal contact, including inhalation.
Wear protective clothing when risk of exposure occurs.
Use in a well-ventilated area.
Prevent concentration in hollows and sumps.
DO NOT enter confined spaces until atmosphere has been checked.
DO NOT allow material to contact humans, exposed food or food utensils.
Other information

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- **DO NOT** use aluminium or galvanised containers
- Polyethylene or polypropylene container
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

- Calcium chloride (and its hydrates):
 - are incompatible with boric acid, calcium oxide, bromine trifluoride, 2-furan, percarboxylic acid
 - may produce explosive hydrogen gas on contact with zinc
 - catalyse exothermic polymerisation of methyl vinyl ether
 - produce heat on contact with water
 - attack metals

 Addition of a quantity of calcium chloride to boiling water has generated heat sufficient to cause a violent steam explosion on several occasions

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

| OCCUPATIONAL EXPOSURE LIMITS (OEL) |
| INGREDIENT DATA |
| Not Available |

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium chloride</td>
<td>Calcium chloride</td>
<td>12 mg/m³</td>
<td>130 mg/m³</td>
<td>790 mg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>calcium chloride</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>water</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Personal protection

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available.

Skin protection

- See Hand protection below

Hands/feet protection

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly.

Body protection

- See Other protection below

Other protection

- Overalls.
- PVC, apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

Recommended material(s)

- Respiratory protection
 - Particulates (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent)

Selection of the Class and Type of respirator will depend upon the level of breathing zone...
"Forsberg Clothing Performance Index". The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYL</td>
<td>C</td>
</tr>
<tr>
<td>NATURAL RUBBER</td>
<td>C</td>
</tr>
<tr>
<td>NEOPRENE</td>
<td>C</td>
</tr>
<tr>
<td>PVA</td>
<td>C</td>
</tr>
<tr>
<td>VITON</td>
<td>C</td>
</tr>
</tbody>
</table>

* CPI - Chemwatch Performance Index
A: Best Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation.
* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Physical state</th>
<th>Relative density (Water = 1)</th>
<th>Partition coefficient n-octanol / water</th>
<th>Viscosity (cSt)</th>
<th>Molecular weight (g/mol)</th>
<th>Surface Tension (dyn/cm or mN/m)</th>
<th>Odour threshold</th>
<th>pH (as supplied)</th>
<th>Flammability</th>
<th>Evaporation rate</th>
<th>Reactivity</th>
<th>Flammable</th>
<th>Upper Explosive Limit (%)</th>
<th>Lower Explosive Limit (%)</th>
<th>Vapour pressure (kPa)</th>
<th>Solubility in water (g/L)</th>
<th>Vapour density (Air = 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Liquid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Not Available</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

<table>
<thead>
<tr>
<th>Reactivity</th>
<th>See section 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical stability</td>
<td></td>
</tr>
<tr>
<td>▶ Unstable in the presence of incompatible materials.</td>
<td></td>
</tr>
<tr>
<td>▶ Product is considered stable.</td>
<td></td>
</tr>
<tr>
<td>▶ Hazardous polymerisation will not occur.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Possibility of hazardous reactions</th>
<th>See section 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conditions to avoid</td>
<td>See section 7</td>
</tr>
<tr>
<td>Incompatible materials</td>
<td>See section 7</td>
</tr>
<tr>
<td>Hazardous decomposition products</td>
<td>See section 5</td>
</tr>
</tbody>
</table>

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

<table>
<thead>
<tr>
<th>Inhaled</th>
<th>The material is not thought to produce either adverse health effects or irritation of the respiratory tract following inhalation (as classified by EC Directives using animal models). Nevertheless, adverse systemic effects have been produced following exposure of animals by at least one other route and good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ingestion</td>
<td>Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.</td>
</tr>
<tr>
<td>Skin Contact</td>
<td>Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Open cuts, abraded or irritated skin should not be exposed to this material.</td>
</tr>
</tbody>
</table>
Lanko 302 Cement Accelerator

Eye

There is evidence that material may produce eye irritation in some persons and produce eye damage 24 hours or more after instillation. Severe inflammation may be expected with pain.

Chronic

Prolonged or repeated skin contact may cause drying with cracking, irritation and possible dermatitis following. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure.

Legend: – Data available but does not fill the criteria for classification

<table>
<thead>
<tr>
<th>Species</th>
<th>Toxicity</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanko 302 Cement Accelerator</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Calcium chloride</th>
<th>Toxicity</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal (rat) LD50: ~2630 mg/kg[2]</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oral (rat) LD50: 2-301 mg/kg[1]</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Water</th>
<th>Toxicity</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species</th>
<th>Toxicity</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanko 302 Cement Accelerator & Calcium chloride</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

For calcium:
Toxicity from calcium is not common, because the gastrointestinal tract normally limits the amount of calcium absorbed. Therefore, short-term intake of large amounts of calcium does not generally produce any ill effects aside from constipation and an increased risk of kidney stones. However, more severe toxicity can occur when excess calcium is ingested over long periods, or when calcium is combined with increased amounts of vitamin D, which increases calcium absorption. Calcium toxicity is also found sometimes after excessive administration of calcium via a vein. Toxicity shows as abnormal deposition of calcium in tissues and by elevated blood calcium levels. However, high blood calcium is often due to other causes, such as abnormally high amounts of parathyroid hormone (PTH).

CACTIUM CHLORIDE

No significant acute toxicological data identified in literature search.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin.

Acute Toxicity ✓
Carcinogenicity ✗
Skin Irritation/Corrosion ✗
Reproductivity ✓
Serious Eye Damage/Irritation ✓
STOT - Single Exposure ✗
Respiratory or Skin sensitisation ✓
STOT - Repeated Exposure ✗
Mutagenicity ✗
Aspiration Hazard ✗

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Species</th>
<th>Endpoint</th>
<th>Test Duration (HR)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lanko 302 Cement Accelerator</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Calcium chloride</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td><3mg/L</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>EC50</td>
<td>48</td>
<td>Crustacea</td>
<td>50mg/L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>3130mg/L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BCFD</td>
<td>48</td>
<td>Crustacea</td>
<td>0.0832425mg/L</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>NOEC</td>
<td>48</td>
<td>Crustacea</td>
<td>260.12mg/L</td>
<td>4</td>
</tr>
<tr>
<td>Water</td>
<td>LC50</td>
<td>96</td>
<td>Fish</td>
<td>897.520mg/L</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>EC50</td>
<td>96</td>
<td>Algae or other aquatic plants</td>
<td>8768.874mg/L</td>
<td>3</td>
</tr>
</tbody>
</table>

Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

For Chloride: Although inorganic chloride ions are not normally considered toxic they can exist in effluents at acutely toxic levels. Incidental exposure to inorganic chloride may occur in occupational settings where chemicals management policies are improperly applied. The toxicity of chloride salts depends on the counter-ion (cation) present; that of chloride itself is unknown. Chloride toxicity has not been observed in humans except in the special case of impaired sodium chloride metabolism, e.g. in congestive heart failure. Healthy individuals can tolerate the intake of large quantities of chloride provided that there is an intake of fresh water following ingestion. Although excessive intake of drinking-water containing sodium chloride at concentrations above 2.5 g/L has been reported to produce hypertension, this effect is believed to be related to the sodium ion concentration.

DO NOT discharge into sewer or waterways.

Continued...
Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (LogKOW = -1.38)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>LOW (KOC = 14.3)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.

Otherwise:
- If container cannot be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

- A Hierarchy of Controls seems to be common - the user should investigate:
 - Reduction
 - Reuse
 - Recycling
 - Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

<table>
<thead>
<tr>
<th>CALCIUM CHLORIDE(10043-52-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WATER(7732-18-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Inventory of Chemical Substances (AICS)</td>
</tr>
</tbody>
</table>

National Inventory Status

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
</tbody>
</table>
Canada - DSL | Y
Canada - NDSL | N (water; calcium chloride)
China - IECSC | Y
Europe - EINEC / ELINCS / NLP | Y
Japan - ENCS | Y
Korea - KECI | Y
New Zealand - NZIoC | Y
Philippines - PICCS | Y
USA - TSCA | Y

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Revision Date: 05/09/2018
Initial Date: 01/11/2009

Other information
Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations
PC — TWA: Permissible Concentration-Time Weighted Average
PC — STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.