Davco Streetscape Fluid Grout

Product name: Davco Streetscape Fluid Grout
Synonyms: Not Available
Other means of identification: Not Available

Relevant identified uses of the substance or mixture and uses advised against
Relevant identified uses: Use according to manufacturer's directions.

Details of the supplier of the safety data sheet
Registered company name: Parex Group (ParexGroup)
Address: 67 Elizabeth Street Wetherill Park NSW 2164 Australia
Telephone: +61 2 9616 3000
Fax: +61 2 9725 5551
Website: www.davco.com.au
Email: marketing@davco.com.au

Emergency telephone number
Association / Organisation: Not Available
Emergency telephone numbers: 1800 039 008
Other emergency telephone numbers: Not Available

CHEMWATCH EMERGENCY RESPONSE
Primary Number: 1800 039 008
Alternative Number 1: 1800 039 008
Alternative Number 2: +612 9186 1132

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture
HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Poisons Schedule: Not Applicable
Classification [1]: Skin Corrosion/ Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3

Label elements
Hazard pictogram(s) 😡 💦
Hazard statement(s)

- **H315**: Causes skin irritation.
- **H318**: Causes serious eye damage.
- **H317**: May cause an allergic skin reaction.
- **H335**: May cause respiratory irritation.
- **H412**: Harmful to aquatic life with long-lasting effects.

Precautionary statement(s) Prevention

- **P271**: Use only outdoors or in a well-ventilated area.
- **P280**: Wear protective gloves/protective clothing/eye protection/face protection.
- **P261**: Avoid breathing dust/fumes.
- **P272**: Avoid release to the environment.
- **P273**: Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

- **P305+P351+P338**: IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
- **P310**: Immediately call a POISON CENTER or doctor/physician.
- **P362**: Take off contaminated clothing and wash before reuse.
- **P302+P352**: IF ON SKIN: Wash with plenty of soap and water.
- **P333+P313**: If skin irritation or rash occurs: Get medical advice/attention.
- **P304+P340**: IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.

Precautionary statement(s) Storage

- **P405**: Store locked up.
- **P403+P233**: Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

- **P501**: Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>14808-60-7</td>
<td>60-80</td>
<td>graded sand</td>
</tr>
<tr>
<td>65997-15-1</td>
<td>20-40</td>
<td>portland cement</td>
</tr>
<tr>
<td>112945-52-5</td>
<td>1-3</td>
<td>silica amorphous, fumed, crystalline free</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Ingestion

- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.
For acute or short term repeated exposures to iron and its derivatives:
- Always treat symptoms rather than history.
- In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg.
- Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin.
- Hepatic damage may progress to failure with hyperprothrombinemia and hypoglycaemia. Hepatorenal syndrome may occur.
- Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension.
- Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater than 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination.
- Activated charcoal does not effectively bind iron.
- Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea.
- Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology]

For acute or short term repeated exposures to dichromates and chromates:
- Absorption occurs from the alimentary tract and lungs.
- The kidney excretes about 60% of absorbed chromate within 8 hours of ingestion. Urinary excretion may take up to 14 days.
- Establish airway, breathing and circulation. Assist ventilation.
- Induce emesis with Ipecac Syrup if patient is not convulsing, in coma or obtunded and if the gag reflex is present.
- Otherwise use gastric lavage with endotracheal intubation.
- Fluid balance is critical. Peritoneal dialysis, haemodialysis or exchange transfusion may be effective although available data is limited.
- British Anti-Lewisite, ascorbic acid, folic acid and EDTA are probably not effective.
- There are no antidotes.
- Primary irritation, including chrome ulceration, may be treated with ointments comprising calcium-sodium-EDTA. This, together with the use of frequently renewed dressings, will ensure rapid healing of any ulcer which may develop.

The mechanism of action involves the reduction of Cr (VI) to Cr(III) and subsequent chelation; the irritant effect of Cr(III)/protein complexes is thus avoided. [ILO Encyclopedia]

[Ellenhorn and Barceloux: Medical Toxicology]

For acute or short-term repeated exposures to highly alkaline materials:
- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, ocriothoridotomy or tracheostomy may be necessary.
- Oxygen is given as indicated.
- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.
- Alkalis continue to cause damage after exposure.

INGESTION:
- Milk and water are the preferred diluents
- No more than 2 glasses of water should be given to an adult.
- Neutralising agents should never be given since exothermic heat reaction may compound injury.
* Catharsis and emesis are absolutely contra-indicated.
* Activated charcoal does not absorb alkali.
* Gastric lavage should not be used.

Supportive care involves the following:
- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:
- Injury should be irrigated for 20-30 minutes.
- Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

<table>
<thead>
<tr>
<th>Fire Incompatibility</th>
<th>None known.</th>
</tr>
</thead>
</table>

Advice for firefighters

<table>
<thead>
<tr>
<th>Fire Fighting</th>
<th>Alert Fire Brigade and tell them location and nature of hazard.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wear breathing apparatus plus protective gloves in the event of a fire.</td>
</tr>
<tr>
<td></td>
<td>Prevent, by any means available, spillage from entering drains or water courses.</td>
</tr>
<tr>
<td></td>
<td>Use fire fighting procedures suitable for surrounding area.</td>
</tr>
<tr>
<td></td>
<td>DO NOT approach containers suspected to be hot.</td>
</tr>
<tr>
<td></td>
<td>Cool fire exposed containers with water spray from a protected location.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fire/Explosion Hazard</th>
<th>Non combustible.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not considered a significant fire risk, however containers may burn.</td>
</tr>
</tbody>
</table>

HAZCHEM | Not Applicable |

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
See section 8

Environmental precautions
See section 12
Methods and material for containment and cleaning up

Minor Spills

- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

Major Spills

Moderate hazard.

- CAUTION: Advise personnel in area.
- Alert Emergency Services and tell them location and nature of hazard.
- Control personal contact by wearing protective clothing.
- Prevent, by any means available, spillage from entering drains or water courses.
- Recover product wherever possible.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling

- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.

Other information

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

Multi-ply paper bag with sealed plastic liner or heavy gauge plastic bag.

NOTE: Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against sliding or collapse. Check that all containers are clearly labelled and free from leaks. Packing as recommended by manufacturer.

Storage incompatibility

- Avoid strong acids, acid chlorides, acid anhydrides and chloroformates.
- Avoid contact with copper, aluminium and their alloys.

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

<table>
<thead>
<tr>
<th>INGREDIENT DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>graded sand</td>
<td>Silica, crystalline-quartz; (Silicon dioxide)</td>
<td>0.075 mg/m3</td>
<td>33 mg/m3</td>
<td>200 mg/m3</td>
</tr>
<tr>
<td>silica amorphous, fumed, crystalline free</td>
<td>Silica, amorphous fumed</td>
<td>18 mg/m3</td>
<td>100 mg/m3</td>
<td>630 mg/m3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>graded sand</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>portland cement</td>
<td>5000 mg/m3</td>
<td>Not Available</td>
</tr>
<tr>
<td>silica amorphous, fumed, crystalline free</td>
<td>3000 mg/m3</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:
- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
Personal protection

Eye and face protection
- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available.

Skin protection
See Hand protection below

Hands/feet protection
- NOTE:
 - The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
 - Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.
 - The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
 - The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
 - Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly.
 - Neoprene rubber gloves
Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
 - polychloroprene.
 - nitrile rubber.
 - butyl rubber.
 - fluoroacoutchouc.
 - polyvinyl chloride.

Body protection
See Other protection below

Other protection
- Overall.
- PVC, apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Respiratory protection
Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent)

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>P1 Air-line*</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td>100+ x ES</td>
<td>-</td>
<td>Air-line*</td>
<td>-</td>
</tr>
</tbody>
</table>

* - Negative pressure demand ** - Continuous flow
A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Respirators may be necessary when engineering and administrative controls do not adequately prevent exposures.
- The decision to use respiratory protection should be based on professional judgment that takes into account toxicity information, exposure measurement data, and frequency and likelihood of the worker's exposure - ensure users are not subject to high thermal loads which may result in heat stress or distress due to personal protective equipment (powered, positive flow, full face apparatus may be an option).
- Published occupational exposure limits, where they exist, will assist in determining the adequacy of the selected respiratory protection. These may be government mandated or vendor recommended.
- Certified respirators will be useful for protecting workers from inhalation of particulates when properly selected and fit tested as part of a complete respiratory protection program.
- Use approved positive flow mask if significant quantities of dust becomes airborne.
- Try to avoid creating dust conditions.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Appearance</th>
<th>Granulated product with a cementitious odour; not miscible with water.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical state</td>
<td>Divided Solid</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>
The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of oxidising properties.

If applied to the eyes, this material causes severe eye damage.

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Inhalation may result in ulcers or sores of the lining of the nose (nasal mucosa), and lung damage.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

Effects on lungs are significantly enhanced in the presence of respirable particles.

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Inhalation may result in ulcers or sores of the lining of the nose (nasal mucosa), and lung damage. Inhalation is more likely to cause a sensitisation reaction in some persons compared to the general population.

Person with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

Effects on lungs are significantly enhanced in the presence of respirable particles.

The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of oxidising properties.

If applied to the eyes, this material causes severe eye damage.

The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage.

Inhalation may result in ulcers or sores of the lining of the nose (nasal mucosa), and lung damage. Inhalation is more likely to cause a sensitisation reaction in some persons compared to the general population.

Person with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

Effects on lungs are significantly enhanced in the presence of respirable particles.
Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung, irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50000 inch) are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion, increased chest expansion, weakness and weight loss.

Davco Streetscape Fluid Grout

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>graded sand</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>portland cement</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>silica amorphous, fumed, crystalline free</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal (rabbit) LD50: >5000 mg/kg[^2]</td>
<td>Not Available</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 3160 mg/kg[^2]</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- Data available but does not fill the criteria for classification
- Data available to make classification
- Data Not Available

PORTLAND CEMENT

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke’s oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact.

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substances (often particles) and is completely reversible after exposure ceases. No significant acute toxicological data identified in literature search.

SILICA AMORPHOUS, FUMED, CRystALLINE FREE

For silica amorphous:

When experimental animals inhale synthetic amorphous silica (SAS) dust, it dissolves in the lung fluid and is rapidly eliminated. If swallowed, the vast majority of SAS is excreted in the faeces and there is little accumulation in the body. Following absorption across the gut, SAS is eliminated via urine without modification in animals and humans. SAS is not expected to be broken down (metabolised) in mammals. After ingestion, there is limited accumulation of SAS in body tissues and rapid elimination occurs. Intestinal absorption has not been calculated, but appears to be insignificant in animals and humans.

Acute Toxicity

<table>
<thead>
<tr>
<th>Skin Irritation/Corrosion</th>
<th>Carcinogenicity</th>
<th>Reproductivity</th>
<th>Mutagenicity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Serious Eye Damage/Irritation

<table>
<thead>
<tr>
<th>Respiratory or Skin sensitisation</th>
<th>STOT - Single Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STOT - Repeated Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Aspiration Hazard

<table>
<thead>
<tr>
<th>Legend:</th>
</tr>
</thead>
<tbody>
<tr>
<td>– Data available but does not fill the criteria for classification</td>
</tr>
<tr>
<td>– Data available to make classification</td>
</tr>
<tr>
<td>– Data Not Available to make classification</td>
</tr>
</tbody>
</table>

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Davco Streetscape Fluid Grout</th>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>graded sand</th>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>portland cement</th>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>silica amorphous, fumed, crystalline free</th>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Data available for all ingredients</td>
<td>No Data available for all ingredients</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Data available for all ingredients</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Data available for all ingredients</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods
- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.
- Otherwise:
 - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
 - **DO NOT** allow wash water from cleaning or process equipment to enter drains.
 - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
 - Where in doubt contact the responsible authority.

Product / Packaging disposal

DO NOT

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

GRADED SAND(14808-60-7.) is found on the following regulatory lists:

- Australia Exposure Standards
- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)
- International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

PORTLAND CEMENT(65997-15-1) is found on the following regulatory lists:

- Australia Exposure Standards
- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)

SILICA AMORPHOUS, FUMED, CRYSTALLINE FREE(112945-52-5) is found on the following regulatory lists:

- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)

National Inventory

<table>
<thead>
<tr>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>AICS Y</td>
</tr>
</tbody>
</table>
Canada - DSL Y
Canada - NDSL N (portland cement; silica amorphous, fumed, crystalline free; graded sand)
China - IECSC Y
Europe - EINEC / ELINCS / NLP N (silica amorphous, fumed, crystalline free)
Japan - ENCS N (portland cement; silica amorphous, fumed, crystalline free)
Korea - KECI Y
New Zealand - NZIoC Y
Philippines - PICCS N (portland cement)
USA - TSCA N (silica amorphous, fumed, crystalline free)

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>silica amorphous, fumed, crystalline free</td>
<td>112945-52-5, 67256-35-3</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC — TWA: Permissible Concentration-Time Weighted Average
PC — STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.