Davco Streetscape Fine Bedding Concrete

Parex Group (ParexGroup)
Chemwatch: 42-0490
Version No: 5.1.1.1
Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Davco Streetscape Fine Bedding Concrete</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>Not Available</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

<table>
<thead>
<tr>
<th>Relevant identified uses</th>
<th>Use according to manufacturer's directions.</th>
</tr>
</thead>
</table>

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Parex Group (ParexGroup)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>67 Elizabeth Street Wetherill Park NSW 2164 Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>+61 2 9616 3000</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 2 9725 5551</td>
</tr>
<tr>
<td>Website</td>
<td>www.davco.com.au</td>
</tr>
<tr>
<td>Email</td>
<td>marketing@davco.com.au</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Not Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>1800 039 008</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

CHEMWATCH EMERGENCY RESPONSE

<table>
<thead>
<tr>
<th>Primary Number</th>
<th>1800 039 008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative Number 1</td>
<td>1800 039 008</td>
</tr>
<tr>
<td>Alternative Number 2</td>
<td>+612 9186 1132</td>
</tr>
</tbody>
</table>

Once connected and if the message is not in your preferred language then please dial 01

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

HAZARDOUS CHEMICAL. NON-DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

CHEMWATCH HAZARD RATINGS

<table>
<thead>
<tr>
<th></th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flammability</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Toxicity</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Body Contact</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Reactivity</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Chronic</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Poisons Schedule | Not Applicable

Classification [1]

<table>
<thead>
<tr>
<th>Classification</th>
<th>[1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin Corrosion/Irritation Category 2, Serious Eye Damage Category 1, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Specific target organ toxicity - repeated exposure Category 2, Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

Label elements

Hazard pictogram(s)

Continued...
SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>%[weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>14808-60-7</td>
<td>70-80</td>
<td>graded sand</td>
</tr>
<tr>
<td>65997-15-1</td>
<td>20-30</td>
<td>portland cement</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact
If this product comes in contact with the eyes:
- Immediately hold eyelids apart and flush the eye continuously with running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes.
- Transport to hospital or doctor without delay.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor, without delay.

Ingestion
- Immediately give a glass of water.
- First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.
For acute or short term repeated exposures to iron and its derivatives:
- Always treat symptoms rather than history.
- In general, however, toxic doses exceed 20 mg/kg of ingested material (as elemental iron) with lethal doses exceeding 180 mg/kg.
- Control of iron stores depend on variation in absorption rather than excretion. Absorption occurs through aspiration, ingestion and burned skin.
- Hepatic damage may progress to failure with hypoprothrombinaemia and hypoglycaemia. Hepatorenal syndrome may occur.
- Iron intoxication may also result in decreased cardiac output and increased cardiac pooling which subsequently produces hypotension.
- Serum iron should be analysed in symptomatic patients. Serum iron levels (2-4 hrs post-ingestion) greater than 100 ug/dL indicate poisoning with levels, in excess of 350 ug/dL, being potentially serious. Emesis or lavage (for obtunded patients with no gag reflex) are the usual means of decontamination.
- Activated charcoal does not effectively bind iron.
- Catharsis (using sodium sulfate or magnesium sulfate) may only be used if the patient already has diarrhoea.
- Deferoxamine is a specific chelator of ferric (3+) iron and is currently the antidote of choice. It should be administered parenterally. [Ellenhorn and Barceloux: Medical Toxicology]

For acute or short term repeated exposures to dichromates and chromates:
- Absorption occurs from the alimentary tract and lungs.
- The kidney excretes about 60% of absorbed chromate within 8 hours of ingestion. Urinary excretion may take up to 1.4 days.
- Establish airway, breathing and circulation. Assist ventilation.
- Induce emesis with Ipecac Syrup if patient is not convulsing, in coma or obtunded and if the gag reflex is present.
- Otherwise use gastric lavage with endotracheal intubation.
- Fluid balance is critical. Peritoneal dialysis, haemodialysis or exchange transfusion may be effective although available data is limited.
- British Anti-Lewisite, ascorbic acid, folic acid and EDTA are probably not effective.
- There are no antidotes.
- Primary irritation, including chrome ulceration, may be treated with ointments comprising calcium-sodium-EDTA. This, together with the use of frequently renewed dressings, will ensure rapid healing of any ulcer which may develop.

The mechanism of action involves the reduction of Cr (VI) to Cr(III) and subsequent chelation; the irritant effect of Cr(III)/protein complexes is thus avoided. [ILO Encyclopedia]

[Ellenhorn and Barceloux: Medical Toxicology]

For acute or short-term repeated exposures to highly alkaline materials:
- Respiratory stress is uncommon but present occasionally because of soft tissue edema.
- Unless endotracheal intubation can be accomplished under direct vision, orotracheal intubation or tracheostomy may be necessary.
- Oxygen is given as indicated.
- The presence of shock suggests perforation and mandates an intravenous line and fluid administration.
- Damage due to alkaline corrosives occurs by liquefaction necrosis whereby the saponification of fats and solubilisation of proteins allow deep penetration into the tissue.
- Alkalins continue to cause damage after exposure.

INGESTION:
- Milk and water are the preferred diluents
- No more than 2 glasses of water should be given to an adult.
- Neutralising agents should never be given since exothermic heat reaction may compound injury.
* Catharsis and emesis are absolutely contraindicated.
* Activated charcoal does not absorb alkali.
* Gastric lavage should not be used.

Supportive care involves the following:
- Withhold oral feedings initially.
- If endoscopy confirms transmucosal injury start steroids only within the first 48 hours.
- Carefully evaluate the amount of tissue necrosis before assessing the need for surgical intervention.
- Patients should be instructed to seek medical attention whenever they develop difficulty in swallowing (dysphagia).

SKIN AND EYE:
- Injury should be irrigated for 20-30 minutes.
- Eye injuries require saline. [Ellenhorn & Barceloux: Medical Toxicology]

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture

<table>
<thead>
<tr>
<th>Fire Incompatibility</th>
<th>None known.</th>
</tr>
</thead>
</table>

Advice for firefighters

<table>
<thead>
<tr>
<th>Fire Fighting</th>
</tr>
</thead>
</table>
- Alert Fire Brigade and tell them location and nature of hazard. |
- Wear breathing apparatus plus protective gloves in the event of a fire. |
- Prevent, by any means available, spillage from entering drains or water courses. |
- Use fire fighting procedures suitable for surrounding area. |
- DO NOT approach containers suspected to be hot. |
- Cool fire exposed containers with water spray from a protected location. |

<table>
<thead>
<tr>
<th>Fire/Explosion Hazard</th>
</tr>
</thead>
</table>
- Non combustible. |
- Not considered a significant fire risk, however containers may burn. |

<table>
<thead>
<tr>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
- See section 8

Environmental precautions
- See section 12
Methods and material for containment and cleaning up

Minor Spills
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Use dry clean up procedures and avoid generating dust.
- Place in a suitable, labelled container for waste disposal.

Major Spills
- Moderate hazard.
 - **CAUTION:** Advise personnel in area.
 - Alert Emergency Services and tell them location and nature of hazard.
 - Control personal contact by wearing protective clothing.
 - Prevent, by any means available, spillage from entering drains or water courses.
 - Recover product wherever possible.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- **DO NOT** enter confined spaces until atmosphere has been checked.
- **DO NOT** allow material to contact humans, exposed food or food utensils.

Other information
- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry area protected from environmental extremes.
- Store away from incompatible materials and foodstuffs containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer’s storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container
- Multi-ply paper bag with sealed plastic liner or heavy gauge plastic bag.

NOTE: Bags should be stacked, blocked, interlocked, and limited in height so that they are stable and secure against sliding or collapse. Check that all containers are clearly labelled and free from leaks. Packing as recommended by manufacturer.

Storage incompatibility
- For aluminas (aluminium oxide):
 - Incompatible with hot chlorinated rubber.
 - In the presence of chlorine trifluoride may react violently and ignite.
 - May initiate explosive polymerisation of olefin oxides including ethylene oxide.
 - Produces exothermic reaction above 200°C with halocarbons and an exothermic reaction at ambient temperatures with halocarbons in the presence of other metals.
 - Produces exothermic reaction with oxygen difluoride.
 - May form explosive mixture with oxygen difluoride.
 - Calcium oxide:
 - Reacts violently with water, evolving high quantities of heat
 - Reacts violently, with possible ignition or explosion, with acids, anilinium perchlorate, bromine pentafluoride, chlorine trifluoride, fluorine, hydrogen fluoride, hydrazine, hydrogen sulfide, hydrogen trifluoride, isopropyl isocyanate dichloride, light metals, lithium, magnesium, powdered aluminium, phosphorus, potassium, sulfur trioxide
 - Increase the explosive sensitivity of azides, nitroalkanes (e.g. nitroethane, nitromethane, 1-nitropropane etc.)
 - Is incompatible with boron trifluoride, carbon dioxide, ethylene oxide, ethanol, hydrogen, hydrogen sulfide, hydrogen peroxide (decomposes), light metals, lithium, magnesium, powdered aluminium, phosphorus, potassium, sulfur trioxide
- For aluminas (aluminium oxide):
 - Sensitis most organic azides which are unstable shock- and heat-sensitive explosives.
- May form explosive materials with 1,3-di(5-tetrazolyl)triazene
- Is incompatible with 1,3-di(5-tetrazolyl)triazene
- Is hygroscopic, reacts with water to form gypsum and Plaster of Paris

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters
OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

<table>
<thead>
<tr>
<th>Source</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia Exposure Standards</td>
<td>graded sand</td>
<td>Quartz (respirable dust)</td>
<td>0.1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>graded sand</td>
<td>Quartz (respirable dust)</td>
<td>0.1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>graded sand</td>
<td>Silica - Crystalline</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>Australia Exposure Standards</td>
<td>portland cement</td>
<td>Portland cement</td>
<td>10 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>graded sand</td>
<td>Silica, crystalline-quartz; (Silicon dioxide)</td>
<td>0.075 mg/m³</td>
<td>33 mg/m³</td>
<td>200 mg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>graded sand</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>portland cement</td>
<td>5000 mg/m³</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available.

Eye and face protection

- Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

Skin protection

- The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.
- The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.
- Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly.
- Experience indicates that the following polymers are suitable as glove materials for protection against undissolved, dry solids, where abrasive particles are not present.
 - polyethylene.
 - butyl rubber.
 - fluoroelastomer.
 - polyvinyl chloride.

Hands/feet protection

- Overall.
- PVC apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Body protection

See Other protection below

Other protection

- Overall.
- PVC apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Thermal hazards

Not Available

Respiratory protection

Particulate. (AS/NZS 1716 & 1715, EN 143:2000 & 149:001, ANSI Z88 or national equivalent)

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>P1</td>
<td>-</td>
<td>PAPR-P1</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>Air-line*</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>Air-line**</td>
<td>P2</td>
<td>PAPR-P2</td>
</tr>
<tr>
<td>100+ x ES</td>
<td>-</td>
<td>P3</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Air-line*</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>Air-line**</td>
<td>PAPR-P3</td>
</tr>
</tbody>
</table>
Information on toxicological effects

Inhaled
The material can cause respiratory irritation in some persons. The body's response to such irritation can cause further lung damage. Inhalation of dusts, generated by the material during the course of normal handling, may be damaging to the health of the individual. Inhalation may result in ulcers or sores of the lining of the nose (nasal mucosa), and lung damage.

Persons with impaired respiratory function, airway diseases and conditions such as emphysema or chronic bronchitis, may incur further disability if excessive concentrations of particulate are inhaled.

If prior damage to the circulatory or nervous systems has occurred or if kidney damage has been sustained, proper screenings should be conducted on individuals who may be exposed to further risk if handling and use of the material result in excessive exposures.

Effects on lungs are significantly enhanced in the presence of respirable particles.

Ingestion
The material has **NOT** been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence.

Not normally a hazard due to the physical form of product. The material is a physical irritant to the gastro-intestinal tract.

Skin Contact
This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition.

Though considered non-harmful, slight irritation may result from contact because of the abrasive nature of the aluminium oxide particles. Thus it may cause itching and skin reaction and inflammation.

Four students received severe hand burns whilst making moulds of their hands with dental plaster substituted for Plaster of Paris. The dental plaster known...
as "Stone" was a special form of calcium sulfate hemihydrate containing alpha-hemihydrate crystals that provide high compression strength to the moulds. Beta-hemihydrate (normal Plaster of Paris) does not cause skin burns in similar circumstances. Skin contact may result in severe irritation particularly to broken skin. Ulceration known as "chrome ulcers" may develop. Chrome ulcers and skin cancer are significantly related. Open cuts, abraded or irritated skin should not be exposed to this material.

Eye

Long-term exposure to respiratory irritants may result in airways disease, involving difficulty breathing and related whole-body problems. Harmful: danger of serious damage to health by prolonged exposure through inhalation. Skin contact with the material is more likely to cause a sensitisation reaction in some persons compared to the general population. Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence that inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population. Animal testing shows long term exposure to aluminium oxides may cause lung disease and cancer, depending on the size of the particle. The smaller the size, the greater the tendencies of causing harms. Red blood cells and rabbit alveolar macrophages exposed to calcium silicate insulation materials in vitro showed haemolysis in one study but not in another. Both studies showed the substance to be more cytotoxic than titanium dioxide but less toxic than asbestos. In a small cohort mortality study of workers in a wollastonite quarry, the observed number of deaths from all cancers combined and lung cancer were lower than expected. Wollastonite is a calcium insolicate mineral (CaSiO3). In some cases, small amounts of iron (Fe), and manganese (Mn), and lesser amounts of magnesium (Mg) substitute for calcium (Ca) in the mineral formulae (e.g., rhodonite).

In an inhalation study in rats no increase in tumour incidence was observed but the number of fibres with lengths exceeding 5 um and a diameter of less than 3 um was relatively low.

Cement contact dermatitis (CCD) may occur when contact shows an allergic response, which may progress to sensitisation. Sensitisation is due to soluble chromates (chromate compounds) present in trace amounts in some cements and cement products. Soluble chromates readily penetrate intact skin. Cement dermatitis can be characterised by fissures, eczematous rash, dystrophic nails, and dry skin; acute contact with highly alkaline mixtures may cause localised necrosis. Cement eczema may be due to chromium in feed stocks or contaminations from materials of construction used in processing the cement. Sensitisation to chromium may be the leading cause of nickel and cobalt sensitivity and the high alkalinity of cement is an important factor in cement dermatoses [ILO]. Overexposure to the breathable dust may cause coughing, wheezing, difficulty in breathing and impaired lung function. Chronic symptoms may include decreased vital lung capacity and chest infections. Repeated exposures in the workplace to high levels of fine-divided dusts may produce a condition known as pneumoconiosis, which is the lodgement of any inhaled dusts in the lung, irrespective of the effect. This is particularly true when a significant number of particles less than 0.5 microns (1/50000 inch) are present. Lung shadows are seen in the X-ray. Symptoms of pneumoconiosis may include a progressive dry cough, shortness of breath on exertion, increased chest expansion, weakness and weight loss. Chronic excessive intake of iron have been associated with damage to the liver and pancreas. People with a genetic disposition to poor control over iron are at an increased risk.

Davco Streetscape Fine Bedding Concrete

<table>
<thead>
<tr>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>graded sand</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>portland cement</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2: Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

PORTLAND CEMENT

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urtica or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact.

Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritant compound. Main criteria for diagnosing RADS include the absence of previous asthma, and some atopic traits, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophilia. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases.

No significant acute toxicological data identified in literature search.

Toxicity

<table>
<thead>
<tr>
<th>Acid Stress</th>
<th>Carcinogenicity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>✗</td>
</tr>
</tbody>
</table>

Spectral Data

<table>
<thead>
<tr>
<th>Skin Irritation/Corrosion</th>
<th>Reproductivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✗</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Respiratory or Skin sensitisation</th>
<th>STOT - Single Exposure</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mutagenicity</th>
<th>Aspiration Hazard</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>✗</td>
</tr>
</tbody>
</table>

Legend:

- ✓ = Data available and meets the criteria for classification
- ✗ = Data not available to make classification
- ✗ = Data available but does not fill the criteria for classification
- ✗ = Data available but does not fill the criteria for classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Davco Streetscape Fine Bedding Concrete</th>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
</table>

Continued...
Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data available for all ingredients</td>
<td>No Data available for all ingredients</td>
<td></td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data available for all ingredients</td>
<td></td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Data available for all ingredients</td>
<td></td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible.
- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. otherwise:
 - Where possible retain label warnings and SDS and observe all notices pertaining to the product.
 - DO NOT allow wash water from cleaning or process equipment to enter drains.
 - It may be necessary to collect all wash water for treatment before disposal.
 - In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
 - Where in doubt contact the responsible authority.
 - Recycle wherever possible or consult manufacturer for recycling options.
 - Consult State Land Waste Management Authority for disposal.
 - Bury residue in an authorised landfill.
 - Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

GRADED SAND(14808-60-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

- Australia Exposure Standards
- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)
- International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs
PORTLAND CEMENT(65997-15-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Y</td>
</tr>
<tr>
<td>Canada - NDSSL</td>
<td>N (portland cement; graded sand)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Y</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Y</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N (portland cement)</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>Y</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>N (portland cement)</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Y</td>
</tr>
</tbody>
</table>

Legend:
Y = All ingredients are on the inventory
N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit,
IDLH: Immediately Dangerous to Life or Health Concentrations
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index

This document is copyright.
Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.
TEL (+61 3) 9572 4700.